Amplitude article published in BioPhotonics 

A research project aims to realize deeper optical imaging techniques for cancer diagnosis and monitoring of the human body.

An attractive way to develop a compact, efficient, and low-cost ultrashort-pulse-laser source is second-harmonic generation. Periodically poled nonlinear crystals contain a waveguide that, due to the high-pump-light intensities over a long interaction length, allows highly efficient frequency conversion, even at low and moderate pump power levels. Periodically poled lithium niobate (PPLN) waveguide crystal offers high nonlinearity along with strong damage thresholds, presenting highly efficient nonlinear wavelength conversion crystal. PPLN is used for frequency doubling, difference- and sum-frequency generation, optical parametric oscillation, and other nonlinear processes.

New PPLN for 1700/850 nm broadband second-harmonic generation will be developed for medical imaging by the Amplitude Project. This will provide significant advantages, including application convenience, by integrating the frequency-mixing device into a convenient, compact, robust, and cost-effective packaged format.