thumbnail image
  • Home
  • News
  • Products
    • PPLN Chips
    • PPLN Mixers
    • PPLN Mixer Plus
    • PPLN APP Boards
    • Accessories
    • Custom Solutions
  • Shipping today
  • Tech. Center
    • PPLN Guide-Overview
    • PPLN Guide-Principle
    • PPLN Guide-Materials
    • PPLN Guide-Applications
    • Documents
    • Publications
  • Company
  • Contact
    • Contact us
    • Support
    • Downloads
  • Home
  • News
  • Products
    • PPLN Chips
    • PPLN Mixers
    • PPLN Mixer Plus
    • PPLN APP Boards
    • Accessories
    • Custom Solutions
  • Shipping today
  • Tech. Center
    • PPLN Guide-Overview
    • PPLN Guide-Principle
    • PPLN Guide-Materials
    • PPLN Guide-Applications
    • Documents
    • Publications
  • Company
  • Contact
    • Contact us
    • Support
    • Downloads
  • Search
    • PPLN Chips

      With its technology core in PPLN for nonlinear frequency mixing, HC Photonics provides standard PPLN bulk chips, standard PPLN waveguide chips and special custom/ULTRA PPLN bulk/waveguide chips for your “quick plug-in” nonlinear frequency mixing applications as well as other special/innovative photonics applications. PPLN bulk chips are easy to use and can handle higher optical power (up to a few Watts or more); PPLN waveguide chips provide much higher conversion efficiency (although with limitation in power handling and also challenging in practical alignment for coupling optimization). Standard bulk/waveguide chips in stock are ready to be shipped to you upon your order; special custom/ULTRA chips are tailored to your specific applications or with specs beyond current industry standard. In addition, we also provide PPLN chip-on-submount solutions for your handling/integration convenience.

      Note:
      We also provide related accessories, such as the oven/temperature controllers, crystal mounts and infrared sensing cards for beam detection. Please check the section of PPLN accessories.
      We also provide PPLN photonics packaging and application integration service for your application convenience and application innovation. Please check the section of PPLN Mixers and PPLN APP Boards.

      PPLN Bulk Chips

      (Shipping today)

      PPLN Waveguide Chips

      PPLN Custom/ULTRA Chips

      PPLN Chip-on-submount

    • PPLN Bulk Chips

      HC Photonics provides standard PPLN bulk chips designed for the common laser applications. You can find the list of standard PPLN bulk chips in stocks with application wavelengths ranging from visible to mid-IR generation, based on up-conversion (SHG/SFG) and down-conversion (DFG/OPA/OPG/OPO) frequency mixing configurations and uniform/multiple/fan-out QPM structures.

      Key features

      • Standard-in-stocks for your “quick plug-in” nonlinear frequency mixing applications 
      • Available for up-conversion (SHG/SFG) and down-conversion (DFG/OPA/OPG/OPO) frequency mixing configurations
      • available for visible to mid-IR generation; also contact us for UV and THz
      • available for uniform/multiple/fan-out QPM structures

      Periodical Poling Process

      A ferroelectric material can be changed its dipole moment by applying external electric field. This kind of change can be achieved locally by combining with the lithography technique. The key to manufacturing PPLN is the process of inverting the crystal dipole moment and realize a periodically inverted domain structure.

       

      The processes start with a 3-inch lithium niobate wafer. A mask is needed to define electrode patterns on the wafer, and the metal will be deposited after a typical lithography process. The application of a very high electric field (20kV/mm) will switch the position of the lithium ion and niobate ion within a defined domain, forming periodically flipped dipole orientations. The entire poling process is done within only a few milliseconds and the domain are inverted permanently after that.

      Then the wafer is diced into the chip level with desired chip size for post-processes, like optical polishing and coating, and carefully inspected and packaged before delivery.

      Available Conversion Configuration

      5 mol.% MgO doped PPLN for Second Harmonic Generation (SHG) of blue to red light from a laser source between 950-2200nm infrared wavelength.

      5 mol.% MgO doped PPLN for sum-frequency generation (SFG) of blue to red light from the conventional laser sources such as Yb/Er fiber laser, YAG laser or Ti:Sapphire lasers.

      5 mol.% MgO doped PPLN for laser wavelength downconversion (e.g. optical parametric generation, difference frequency generation) of the conventional pump laser such as Yb fiber lasers, YAG laser, and Ti: Sapphire lasers.

      >150 kinds of single, multiple, fan-out chips in stock for shipping today (see standard list)

      Selected QPM structures for reference

      Example of various QPM patterns: Uniform/Single, Multiple (Tunable), Cascaded (SHG+SFG/DFG), Chirped (Spectrum Engineering), Fan-out (Continuous tunable) etc.

       

      Contact us for other application wavelength ranges (e.g. UV or THz), QPM structures (e.g. chirped or combination of fan-out & multiple), frequency mixing configurations (e.g. cascaded SHG+SFG/DFG) or other requirements (e.g. special dimension/angle /coating/chip-on mount/mixer packaging etc).

      Back to top
    • PPLN Waveguide Chips

      The waveguide can be manufactured on a periodically poled crystal to form a frequency conversion waveguide, such as PPLN waveguide in PPLN bulk crystal. PPLN bulk chips are easy to use and can handle higher optical power (up to a few Watts or more); PPLN waveguide chips provide much higher conversion efficiency and thus enable several applications beyond what can be realized by PPLN bulk (although with limitation in power handling and also challenging in practical alignment for coupling optimization).

      Key Features

      • Standard-in-stocks for your “quick plug-in” nonlinear frequency mixing applications 
      • available for up-conversion (SHG/SFG) and down-conversion (DFG/OPA/OPG) frequency mixing configurations
      • available for visible to mid-IR generation; also contact us for UV and THz
      • available for uniform or chirped QPM structures
      SEM image of PPLN ridge waveguide

      HCP provides two types of the waveguide to customers to satisfy the requirement of the different applicaticatons, one type is proton in-diffused waveguide and the other type is ridge waveguide.

      Compared to the traditional ion or proton in-diffused waveguide, the ridge waveguide has a high damage threshold and wide-operation wavelength range due to the high refractive index difference of the core (LiNbO3) and the cladding. The good confinement leads to good conversion efficiency and feasibility of extremely low propagation losses. For the more technical introduction please see PPLN waveguide type.

       

       

      Most of the waveguides are manufactured upon request, but some of them are available in stock for popular applications. See the typical specification below and just inquiry us with your specific wavelength.

       

      Following table shows the typical specifications of the standard waveguide, for ordering:

      1. Select the serial # covering your interested wavelength (e.g. 1064 nm SHG corresponding to WG-G)

      2. Send an inquiry with specified wavelength to us and we will respond you the available waveguide length in stock.

      3. For the wavelength not listed, please just send us the inquiry for detailed specifications.

      *1 MFD (mode field diameter) tolerance +/-10%

      *2 Normalized efficiency has a tolerance of +/-20% on the specified value (e.g. WG-G: 160-240%/W/cm^2)

      Back to top
    • PPLN Custom/ULTRA Chips

      We also flexibly provide design/manufacture services of Custom/ULTRA PPLN Chips tailored to your special applications, with specs beyond current industry standard, or your never-been-done innovation. Examples are 80mm-long PPLN bulk chips or 40mm-wide multiple-fanout chips. Additional examples are PPLN chips for active Q-switch elements, PPLN chips as band-selected TE/TM mode converter or modulator, etc. Several special structures can possibly be designed/manufactured based on your innovation.

      Key features

      • Specs tailored to your application optimization or beyond current industry standard
      • Explore together with you for your application optimization and innovation
      • Available for special dimension/angle/coating/chip-on mount/mixer packaging

      Available Period x Thickness x Width x Length

      Example QPM configurations for different applications

      A multiple grating structure with different QPM lengths for ultrafast pulse tuning/or optimization

      A multiple grating structure with different QPM chirping rate for bandwidth tuning and/or optimization

      A multiple grating structure with different QPM fan-out periods for continuous wavelength-fine tuning in the selected wavelength bands

      Back to top
    • PPLN Chip-on-submount

      For your chip handling and integration convenience, HCP provides PPLN chip-on-submount solutions. Example application scenarios are for very short chips in ultrafast applications (with chip length as short as 0.3 mm) or for very long chips in CW-OPO applications (with chip length as long as 50 mm or 80 mm). With PPLN chip-on-submount, you can easily integrate PPLN chips to your pre-designed mechanical housing and speed up your applications.

      Key features

      • Standard format or custom to your pre-designed mechanical housing
      • Easy handling/integration or mechanical/thermal stress-optimization

      Example PPLN chip-on-mount for 0.3mm long chip for ultrafast frequency mixing applications

      Back to top

    HCP

    Your trusted value co-creation partner

     

    Our Product

    PPLN Chips

    PPLN Mixers

    PPLN Mixer Plus

    PPLN APP Boards

    Accessories

    Custom Solution

    Contact Us

    +886-3-666 2123

    service@hcphotonics.com

    © 2017 HC Photonics. All Rights Reserved.

    Privacy Policy
      Home
      Message
      phone
      Store
    All Posts
    ×
    ×
    Privacy Policy
    Effective date: August 1, 2018
    
    HC Photonics Corp. ("us", "we", or "our") operates the http://www.hcphotonics.com website (the "Service"). 
    
    This page (https://www.hcphotonics.com/privacy-policy) informs you of our policies regarding the collection, use, and disclosure of personal data when you use our Service and the choices you have associated with that data. We use your data to provide and improve the Service. By using the Service, you agree to the collection and use of information in accordance with this policy.
    
    Here is the outline of the policy, and you can refer to the page  (https://www.hcphotonics.com/privacy-policy) to see the details. 
    
    1. Information Collection And Use
    2. Use of Data
    3. Transfer Of Data
    4. Disclosure Of Data
    5. Security Of Data
    6. Analytics
    7. Service Providers
    8. Links To Other Sites
    9. Children's Privacy
    10. Special information for persons special region 
    
    If you have any further question about our terms, please contact us for further information.
     
    Cookie Use
    We use cookies to ensure a smooth browsing experience. By continuing we assume you accept the use of cookies.
    Learn More